MORBIDITY AND MORTALITY WEEKLY REPORT

August 24, 1990 / Vol. 39 / No. 33

557 Update: Progress Toward Eradicating Poliomyelitis from the Americas
561 Tuberculosis in Developing Countries

International Notes

## Update: Progress Toward Eradicating Poliomyelitis from the Americas

In May 1985, the Pan American Health Organization (PAHO) established a plan for eradicating the indigenous transmission of wild poliovirus from the Region of the Americas by the end of 1990 (1). In response to this initiative, PAHO's Expanded Program on Immunization (EPI) implemented a program strategy that included 1) achievement and maintenance of high poliomyelitis immunization levels through accelerated immunization efforts, including national immunization days held twice a year at least 4 weeks apart; 2) surveillance to detect all new cases of acute flaccid paralysis (AFP); and 3) a rapid, vigorous response, including containment measures, to all new cases of paralysis (2). This report updates efforts through 1989 toward the polio eradication initiative and provides preliminary laboratory surveillance data for 1990.

Through 1989, rates of reported paralytic poliomyelitis continued to decline substantially, coincident with a doubling in oral poliovirus vaccine (OPV) coverage in young children (Figure 1). In 1988, regional estimates of OPV coverage with three doses of vaccine in children by 1 year of age were $>70 \%$; in 1989, this estimate reached an all-time high of $73 \%$. Although polio vaccination levels should be interpreted with caution because of changes over time in the methodology for assessing coverage (3), results such as these are encouraging for the rest of the world.

The intensification of surveillance activities in 1986 resulted in a nearly twofold increase in the number of AFP cases that were investigated and reported, from 1100 in 1985 to 2094 in 1989 (Figure 2). Despite yearly increases since 1986 in reported AFP cases, however, the number of AFP cases confirmed* as poliomyelitis decreased to 130 in 1989, representing an $86 \%$ decline from the 930 cases confirmed in 1986 and a $62 \%$ decline from the 340 cases confirmed in 1988. These polio cases were located in 99 ( $0.7 \%$ ) of the 14,372 counties in Latin America.

[^0]
## Poliomyelitis - Continued

For 1989, of the 2094 reported AFP cases in the Region of the Americas, 1964 were determined not to be polio. For 703 of these cases determined not to be polio, a final diagnosis was submitted to the regional PAHO office and was available for this analysis. The most common known alternative diagnosis was Guillain-Barré syndrome (43\%), followed by trauma (3\%), transverse myelitis (2\%), neoplasms (2\%), and other diagnoses (50\%).

Of the 130 confirmed cases, 24 were caused by culture-confirmed wild poliovirus, and eight were vaccine-related. Of the remaining 98 patients who either died

FIGURE 1. Oral polio vaccine coverage in children 1 year of age and rate* of reported paralytic poliomyelitis, by year - the Americas, 1969-1989

*Per 100,000 population.
${ }^{\dagger}$ Excludes Brazil, Cuba, Mexico, and Paraguay, which use only two doses.

FIGURE 2. Reported and confirmed polio cases, by year - the Americas, 1985-1989


Poliomyelitis - Continued
(18 patients), had residual paralysis (61), or were lost to follow-up (19), 36 (37\%) had no stool sample taken for virus isolation, and 15 (15\%) with negative stools had their stool specimens obtained $>2$ weeks after paralysis onset. (Because the likelihood of virus isolation diminishes with increasing duration between paralysis onset and collection of stool sample, patients for whom stool samples were not taken and patients for whom isolates were negative and stool specimens were taken $>2$ weeks after paralysis onset both should be monitored.)

When the characteristics of cases caused by wild poliovirus were compared with those of cases in the other categories, patients with wild poliovirus were more likely than patients who died to be $<5$ years of age ( $82 \%$ vs. $27 \%$; $p<0.01$ ).

Of the 24 wild poliovirus cases confirmed in 1989, 16 were type 3 and eight were type 1. These cases were limited to six countries in three geographic regions in the Americas: northwestern Mexico, northern Andean subregion, and northeastern Brazil. During 1989, 13 wild type 3 cases occurred in Mexico. In the northern Andean subregion, type 1 wild polioviruses were isolated in Colombia (two cases), Ecuador (two cases), Peru (one case), and Venezuela (one case); type 3 wild polioviruses were isolated in Colombia (three cases). In northeastern Brazil, type 1 wild polioviruses were isolated from two patients.

As of the first 32 weeks of 1990, wild polioviruses had been isolated from three patients with AFP, including type 3 virus from a patient from northwestern Mexico with paralysis onset on February 19, 1990, and type 1 virus from two patients in the northern Andean subregion (one in Ecuador and one in Peru) with respective dates of paralysis onset of March 26 and April 25, 1990.
Reported by: Expanded Programme on Immunization, Pan American Health Organization, Washington, DC. ${ }^{\dagger}$
Editorial Note: As efforts to eradicate polio from the Western Hemisphere proceed, the surveillance of paralytic poliomyelitis has shifted to focus on the surveillance of wild poliovirus. Accordingly, EPI has been using surveillance indicators, such as those assessing the quality of stool collection, to maximize detection of wild poliovirus in persons with suspected polio. Of cases that were confirmed as paralytic poliomyelitis (because of either loss to follow-up, presence of residual paralysis, or death), half were inadequately investigated because stool samples were not obtained or were negative but obtained $>2$ weeks after paralysis onset. The difference in age distribution between persons with culture-confirmed wild poliovirus and fatal cases provides additional indirect evidence that polio may be overdiagnosed among patients from whom wild poliovirus is not isolated.

During the initial stages of the PAHO eradication effort, surveillance of paralytic poliomyelitis was designed to be highly sensitive; consequently, many reported AFP cases ultimately were determined not to be caused by wild poliovirus. This aggressive approach to case detection by a sensitive surveillance system, combined with immediate action to control outbreaks, has contributed to the containment of wild poliovirus within the two remaining areas of risk: northwestern Mexico and the northern Andean subregion.

A large number of suspected cases are ultimately classified as "confirmed" because adequate diagnostic specimens were not collected or tested or because the patients were lost to follow-up or died ( 98 [75\%] of the 130 confirmed cases in 1989). Consequently, at PAHO's most recent Technical Advisory Group (TAG) Meeting on
${ }^{\dagger} 525$ 23rd Street, Washington, DC 20037; telephone (202) 861-3247.

Poliomyelitis - Continued
the EPI and Polio Eradication, held in March 1990 in Mexico City, TAG members recommended the following changes in classification of AFP in the Region of the Americas (4):

1. Confirmed poliomyelitis. Acute paralytic illness associated with the isolation of wild poliovirus, irrespective of residual paralysis.
2. Vaccine-associated poliomyelitis. Acute paralytic illness in which vaccine-like poliovirus is isolated and is believed to be the cause of the disease. Vaccineassociated cases should be reported separately. They are considered as a category separate from confirmed polio with wild poliovirus isolates.
3. Polio compatible. Acute paralytic illness with compatible residual paralysis at 60 days or death or loss to follow-up in which at least two adequate stool specimens were not obtained within 2 weeks after onset of paralysis and examined in three different laboratories. These cases can neither be confirmed nor discarded. This should be a very small proportion of the cases.
4. Not poliomyelitis. Acute paralytic illness in which at least two adequate stool specimens were obtained within 2 weeks after onset of symptoms and were negative for poliovirus. Aliquots of the original samples should be held at the laboratory for possible future use. To ensure the accuracy of this categorization, any patient who dies, is lost to follow-up, or has residual paralysis at 60 days should have aliquots of the original specimens examined in two other laboratories in the PAHO network, using all appropriate techniques. If the specimens were adequate and all were negative, these cases should be considered "not polio" and "discarded." This classification represents a major change from the previous system.
Use of the new classification of AFP has been implemented for all patients with dates of paralysis onset since January 1, 1990.

In July 1990, the International Certification Commission of Poliomyelitis Eradication in the Americas ${ }^{\S}(5)$, convened by PAHO, met for the first time to develop the methodology to certify countries that are polio-free. Although the criteria are not finalized, many of the same procedures that PAHO uses to evaluate polio eradication efforts will also be used by the Commission. The burden of diagnosis and, ultimately, the proof that eradication of transmission of wild poliovirus has been achieved rests with the laboratories. Accordingly, countries need to continue to investigate properly all cases of AFP, and stool specimens obtained from persons with suspected polio must be submitted to the laboratory in adequate condition. The current level of effort must be sustained if polio is to be eradicated from the Americas by the end of 1990 and from the world by the year 2000 (6).

## References

1. Pan American Health Organization. Director announces campaign to eradicate poliomyelitis from the Americas by 1990. Bull Pan Am Health Organ 1985;19:213-5.
[^1]
## Poliomyelitis - Continued

2. de Quadros CA, Andrus JA, Olive J-M, et al. The eradication of poliomyelitis: progress in the Americas. Pediatr Infect Dis J (in press).
3. CDC. Progress toward eradicating poliomyelitis from the Americas. MMWR 1989;38:532-5.
4. Pan American Health Organization. Final report of the Technical Advisory Group. Presented at the VIII Meeting of the Technical Advisory Group on EPI and the Eradication of Poliomyelitis in the Americas. Mexico City, March 1990.
5. Pan American Health Organization. Final report of the first meeting of the International Certification Commission of Poliomyelitis Eradication in the Americas. Washington, DC: Pan American Health Organization, July 1990; reference document no. EPI 21,105.
6. World Health Assembly. Global eradication of poliomyelitis by the year 2000. Geneva: World Health Organization, 1988. (Resolution WHA41.28).

## Tuberculosis in Developing Countries

Since 1988, The World Bank has supported a series of studies ("Health Sector Priorities Review") on the public health importance of clusters of certain diseases in the developing world and on the costs and effectiveness of technologies for prevention and management of these diseases. Since the 1940s, the number of cases and deaths from tuberculosis (TB) has been decreasing in most developed countries; in developing countries, however, TB remains a major problem. This report summarizes findings of The World Bank's evaluation of TB in developing countries (1).

Because reporting of cases and deaths in developing countries is incomplete, for this analysis the burden of TB was estimated indirectly using data on the average annual risk of TB infection (ARI)* (i.e., the probability that any person will be infected or reinfected with Mycobacterium tuberculosis in 1 year), the incidence of sputum smear-positive pulmonary TB, the proportion of all cases of TB that are smearpositive, and case-fatality rates for smear-positive TB and other TB. The ARI is highest in sub-Saharan Africa (1.5\%-2.5\%) and Asia (1.0\%-2.0\%) (2). In comparison, the ARI in the Netherlands in 1985 was estimated at $0.012 \%$ (3).

## Incidence

A regression analysis of data from several countries in which both ARI and the incidence of sputum smear-positive pulmonary TB were known indicated 49 cases of smear-positive TB per 100,000 population for every 1\% ARI (1) (95\% confidence interval: 39-59). Based on these estimates and the observed ARIs from different regions of the world, $>3,000,000$ new cases of smear-positive TB occur annually in developing countries (Table 1, page 567). Because an estimated 1.2 cases of smear-negative pulmonary TB and extrapulmonary TB occur for every case of smear-positive pulmonary TB (1), the total number of new TB cases occurring annually in developing countries is $>7,000,000$ (Table 2, page 567).

## Mortality

Without appropriate chemotherapy, the death rate from TB is approximately $50 \%$ (4). For persons enrolled in a typical national treatment program and treated with isoniazid, thiacetazone, and/or streptomycin, the death rate is approximately $20 \%$ (1).
(Continued on page 567)

[^2]FIGURE I. Notifiable disease reports, comparison of 4-week totals ending August 18, 1990, with historical data - United States

*Ratio of current 4-week total to mean of 154 -week totals (from comparable, previous, and subsequent 4 -week periods for past 5 years).

## TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending August 18, 1990 (33rd Week)

|  | Cum. 1990 |  | Cum. 1990 |
| :---: | :---: | :---: | :---: |
| AIDS | 26,232 | Plague | 1 |
| Anthrax |  | Poliomyelitis, Paralytic* | - |
| Botulism: Foodborne | 7 | Psittacosis | 77 |
| Infant | 38 | Rabies, human | 1 |
| Other | 5 | Syphilis: civilian | 30,186 |
| Brucellosis | 45 | military | 165 |
| Cholera | 3 | Syphilis, congenital, age < 1 year | 45 |
| Congenital rubella syndrome | 3 | Tetanus | 35 |
| Diphtheria | 2 | Toxic shock syndrome | 207 |
| Encephalitis, post-infectious | 65 | Trichinosis | 19 |
| Gonorrhea: civilian | 415,409 | Tuberculosis | 13,604 |
| military | 5,809 | Tularemia | 70 |
| Leprosy | 133 | Typhoid fever | 256 |
| Leptospirosis | 28 | Typhus fever, tickborne (RMSF) | 354 |
| Measles: imported indigenous | $\begin{array}{r} 868 \\ 16,822 \end{array}$ |  |  |

[^3]TABLE II. Cases of specified notifiable diseases, United States, weeks ending
August 18, 1990, and August 19, 1989 (33rd Week)

| Reporting Area | AIDS | Aseptic Meningitis | Encephalitis |  | Gonorrhea (Civilian) |  | Hepatitis (Viral), by type |  |  |  | Legionellosis | Leprosy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Primary | Post-infectious |  |  | A | B | NA,NB | Unspecified |  |  |
|  | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1989 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | Cum. <br> 1990 | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ |
| UNITED STATES | 26,232 | 4,286 | 443 | 65 | 415,409 | 432,259 | 18,099 | 12,703 | 1,366 | 1,061 | 728 | 133 |
| NEW ENGLAND | 1,000 | 164 | 15 | - | 11,627 | 12,286 | 375 | 674 | 44 | 43 | 32 | 9 |
| Maine | 40 | 6 | 1 | - | 124 | 169 | 5 | 25 | 4 | 1 | 3 | . |
| N.H. | 44 | 14 | - | - | 119 | 113 | 6 | 29 | 3 | 2 | 3 | - |
| Vt. | 10 | 16 | 2 | - | 35 | 43 | 4 | 37 | 4 | . | 5 | - |
| Mass. | 563 | 50 | 6 | - | 4,795 | 4,795 | 259 | 418 | 23 | 38 | 15 | 8 |
| R.I. | 53 | 55 | 1 | - | 710 | 895 | 38 | 31 | - | 2 | 6 | 1 |
| Conn. | 290 | 23 | 5 | - | 5,844 | 6,271 | 63 | 134 | 10 | . | . | . |
| MID. ATLANTIC | 7,700 | 434 | 34 | 4 | 55,871 | 64,624 | 2,593 | 1,773 | 149 | 75 | 223 | 17 |
| Upstate N.Y. | 997 | 220 | 28 | 1 | 8,579 | 9,799 | 711 | 463 | 40 | 20 | 87 | 1 |
| N.Y. City | 4,304 | 97 | 3 | 1 | 22,930 | 25,973 | 336 | 490 | 22 | 38 | 45 | 12 |
| N.J. | 1,596 | - | 1 | - | 9,613 | 9,670 | 249 | 384 | 31 | - | 36 | 3 |
| Pa . | 803 | 117 | 2 | 2 | 14,749 | 19,182 | 1,297 | 436 | 56 | 17 | 55 | 1 |
| E.N. CENTRAL | 1,816 | 705 | 105 | 11 | 79,948 | 78,275 | 1,392 | 1,519 | 107 | 66 | 167 | 2 |
| Ohio | 440 | 160 | 30 | 3 | 24,270 | 20,165 | 139 | 276 | 43 | 10 | 57 | . |
| Ind. | 153 | 108 | 2 | 6 | 6,793 | 5,480 | 75 | 284 | 5 | 14 | 30 | - |
| III. | 743 | 106 | 30 | 2 | 25,863 | 25,752 | 684 | 279 | 27 | 15 | 8 | 1 |
| Mich. | 330 | 302 | 38 | . | 18,200 | 20,249 | 257 | 440 | 23 | 27 | 52 | 1 |
| Wis. | 150 | 29 | 5 | - | 4,822 | 6,629 | 237 | 240 | 9 | - | 20 | - |
| W.N. CENTRAL | 606 | 199 | 38 | 1 | 21,886 | 19,224 | 1,061 | 583 | 95 | 24 | 36 | - |
| Minn. | 93 | 12 | 11 | 1 | 2,678 | 2,109 | 156 | 76 | 21 | - | - | - |
| lowa | 25 | 23 | 5 | - | 1,599 | 1,653 | 202 | 45 | 8 | 2 | 3 | - |
| Mo. | 360 | 116 | 5 | - | 13,166 | 11,656 | 331 | 356 | 42 | 18 | 22 | - |
| N. Dak. | 2 | 9 | - | - | 55 | 89 | 10 | 4 | 2 | 1 | . | - |
| S. Dak. | 2 | 5 | 2 | - | 138 | 162 | 144 | 5 | 3 | - | - | - |
| Nebr. | 29 | 14 | 7 | - | 1,103 | 890 | 62 | 23 | 4 | - | 6 | - |
| Kans. | 95 | 20 | 8 | - | 3,147 | 2,665 | 156 | 74 | 15 | 3 | 5 | - |
| S. ATLANTIC | 5,598 | 924 | 100 | 19 | 119,561 | 116,511 | 2,175 | 2,441 | 207 | 163 | 116 | 4 |
| Del. | 58 | 27 | 3 | - | 1,940 | 1,943 | 86 | 2, 66 | 6 | 1 | 6 |  |
| Md. | 558 | 107 | 14 | 1 | 13,417 | 13,042 | 767 | 350 | 26 | 8 | 49 | 2 |
| D.C. | 484 | 2 | - | - | 8,370 | 7,797 | 12 | 28 | 4 | - |  | . |
| Va . | 498 | 142 | 35 | 2 | 11,153 | 9,722 | 183 | 156 | 29 | 119 | 8 | - |
| W. Va. | 38 | 29 | 14 | - | 751 | 903 | 12 | 57 | 4 | 4 | 3 | - |
| N.C. | 372 | 88 | 23 | - | 18,319 | 17,290 | 488 | 684 | 82 | - | 15 | 1 |
| S.C. | 233 | 12 | 1 | - | 9,340 | 10,674 | 28 | 387 | 13 | 8 | 15 | - |
| Ga. | 772 | 184 | 4 | 1 | 26,406 | 22,502 | 229 | 279 | 7 | 7 | 12 | - |
| Fla. | 2,585 | 333 | 6 | 15 | 29,865 | 32,638 | 370 | 434 | 36 | 16 | 8 | 1 |
| E.S. CENTRAL | 644 | 394 | 37 | 1 | 35,263 | 33,729 | 250 | 957 | 102 | 5 | 45 | - |
| Ky. | 111 | 96 | 13 | , | 3,779 | 3,249 | 65 | 331 | 34 | 4 | 18 | - |
| Tenn. | 193 | 59 | 18 | 1 | 10,893 | 11,071 | 116 | 518 | 52 |  | 15 | - |
| Ala. | 144 | 164 | 6 | - | 11,801 | 10,901 | 68 | 104 | 14 | - | 12 | - |
| Miss. | 196 | 75 | - | - | 8,790 | 8,508 | 1 | 4 | 2 | 1 | 1 | - |
| W.S. CENTRAL | 2,972 | 431 | 21 | 6 | 42,343 | 44,771 | 1,860 | 1,324 | 62 | 174 | 38 | 29 |
| Ark. | 140 | 8 | 1 | - | 5,400 | 5,174 | 317 | , 53 | 6 | 13 | 7 | - |
| La. | 456 | 57 | 6 | - | 8,071 | 9,461 | 121 | 201 | 3 | 6 | 12 | - |
| Okla. | 148 | 39 | 2 | 5 | 3,829 | 3,902 | 365 | 105 | 19 | 17 | 13 | - |
| Tex. | 2,228 | 327 | 12 | 1 | 25,043 | 26,234 | 1,057 | 965 | 34 | 138 | 6 | 29 |
| MOUNTAIN | 700 | 205 | 17 | 2 | 8,015 | 9,187 | 2,967 | 975 | 130 | 82 | 29 | - |
| Mont. | 10 | 3 | - | . | 113 | 127 | 88 | 48 | 4 | 4 | 2 | - |
| Idaho | 17 | - | - | - | 86 | 123 | 56 | 60 | 8 | - | 3 | - |
| Wyo. | 2 | 1 | 1 | - | 100 | 60 | 43 | 12 | 5 | 1 | 3 | - |
| Colo. | 218 | 47 | 3 | - | 1,562 | 1,989 | 189 | 104 | 29 | 29 | 5 | - |
| N. Mex. | 70 | 9 |  | - | , 793 | +881 | 583 | 127 | 9 | 3 | 2 | - |
| Ariz. | 213 | 103 | 7 | - | 3,412 | 3,493 | 1,472 | 341 | 48 | 31 | 9 | - |
| Utah | 68 | 24 | 2 | - | 264 | 285 | 305 | 69 | 17 | 5 | 3 | - |
| Nev. | 102 | 18 | 4 | 2 | 1,685 | 2,229 | 231 | 214 | 10 | 9 | 5 | - |
| PACIFIC | 5,196 | 830 | 76 | 21 | 40,895 | 53,652 | 5,426 | 2,457 | 470 | 429 | 42 | 72 |
| Wash. | 381 | - | 5 | 1 | 3,394 | 4,228 | 920 | 385 | 82 | 19 | 10 | 4 |
| Oreg. | 192 | - | - | - | 1,651 | 1,956 | 556 | 271 | 36 | 7 | - | - |
| Calif. | 4,509 | 698 | 66 | 19 | 34,860 | 46,544 | 3,753 | 1,720 | 340 | 397 | 31 | 58 |
| Alaska | 22 | 73 | 4 |  | 673 | 601 | +135 | + 40 | 3 | 1 | 31 | 58 |
| Hawaii | 92 | 59 | 1 | 1 | 317 | 323 | 62 | 41 | 9 | 5 | 1 | 10 |
| Guam | 1 | 2 | - | - | 149 | 105 | 9 | 1 | - | 8 | - | - |
| P.R. | 902 | 45 | 6 | - | 460 | 681 | 113 | 184 | 2 | 19 | - | - |
| V.I. | 10 | - | - | - | 249 | 437 | 1 | 8 | - | - | - | - |
| Amer. Samoa | - | 1 | - | . | 44 | 30 | 21 | - | - | . | - | 10 |
| C.N.M.I. | - | - | - | - | 113 | 64 | 9 | 6 | - | 15 | - | 3 |

TABLE II. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending August 18, 1990, and August 19, 1989 (33rd Week)

| Reporting Area | Malaria | Measles (Rubeola) |  |  |  |  | Menin- <br> gococcal <br> Infections <br> Cum. <br> 1990 | Mumps |  | Pertussis |  |  | Rubella |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Indigenous |  | Imported* |  | Total <br> Cum. <br> 1989 |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | 1990 | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | 1990 | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ |  |  | 1990 | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | 1990 | $\begin{aligned} & \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1989 \end{aligned}$ | 1990 | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1989 \end{aligned}$ |
| UNITED STATES | 712 | 158 | 16,822 | 2 | 868 | 11,019 | 1,663 | 45 | 3,724 | 7.1 | 2,055 | 2,005 | 74 | 766 | 287 |
| NEW ENGLAND | 60 | - | 236 | - | 24 | 309 | 124 | - | 36 | 9 | 256 | 247 | 1 | 8 | 6 |
| Maine | $1$ | - | 27 | - | 2 | - | 10 | - | - | - | 10 | 6 | 1 | 1 | - |
| N.H. | 4 | - | . | - | 8 | 9 | 5 | - | 8 | - | . 31 | 5 * | . | 1 | 4 |
| Vt. | 5 | - | $\cdot$ | - | 1 | 3 | 10 | - | 1 | - | 6 | 6 | - | - | 1 |
| Mass. | 31 | . | 17 | - | 7 | 44 | 58 | - | 11 | 8 | 192 | 207 | - | 2 | 1 |
| R.I. | 5 | - | 27 | - | 3 | 41 | 12 | - | 5 | - | 2 | 11 | - | 1 | - |
| Conn. | 14 | - | 165 | - | 3 | 212 | 29 | - | 11 | 1 | 15 | 12 | - | 3 | - |
| MID. ATLANTIC | 156 | 1 | 946 | - | 149 | 894 | 247 | - | 237 | - | 341 | 110 | - | 5 | 29 |
| Upstate N.Y. | 31 | 1 | 200 | - | 109 | 138 | 93 | - | 105 | - | 268 | 43 | - | 4 | 12 |
| N.Y. City | 51 | - | 211 | - | 21 | 85 | 34 | - | - | - | - | 3 | - | - | 15 |
| N.J. | 53 | - | 173 | - | 10 | 420 | 56 | - | 54 | - | 13 | 25 | - | - | 2 |
| Pa . | 21 | - | 362 | - | 9 | 251 | 64 | - | 78 | - | 60 | 39 | . | 1 | 2 |
| E.N. CENTRAL | 35 | 101 | 3,187 | - | 143 | 3,500 | 222 | 2 | 383 | 4 | 433 | 289 | - | 31 | 24 |
| Ohio | 5 | 100 | 549 | - | 3 | 743 | 72 | . | 89 | 2 | 128 | 45 | . | 1 | 3 |
| Ind. | 2 | - | 317 | - | 1 | 78 | 23 | - | 15 |  | 75 | 18 | - | , | - |
| III. | 12 | 1 | 1,230 | - | 10 | 2,176 | 55 | - | 116 | - | 97 | 97 | - | 18 | 19 |
| Mich. | 12 | - | 348 | - | 125 | 299 | 51 | 2 | 125 | 2 | 56 | 26 | . | 9 | 1 |
| Wis. | 4 | - | 743 | - | 4 | 204 | 21 | . | 38 | 2 | 77 | 103 | - | 3 | 1 |
| W.N. CENTRAL | 10 | 2 | 770 | - | 13 | 635 | 58 | 2 | 108 | 8 | 102 | 130 | - | 14 | 6 |
| Minn. | 1 |  | 314 | - | 3 | 15 | 11 | - | 7 |  | 17 | 28 | - | 9 | - |
| lowa | 2 | 2 | 25 | - | 1 | 7 | 1 | - | 16 | 4 | 15 | 13 | - | 4 | 1 |
| Mo. | 6 |  | 96 | - | - | 367 | 23 | 2 | 49 | 3 | 58 | 80 | . |  | 4 |
| N. Dak. | - | - | 15 | - | $\square$ |  | 1 | - | - | 3 | 1 | 1 | . | 1 | 4 |
| S. Dak. | - | - | 15 | - | 8 | - | 2 | - | - | - | 1 | 1 | - | , | . |
| Nebr. | - | - | 97 | - | 1 | 113 | 5 | - | 3 | 1 | 3 | 4 | . | - | - |
| Kans. | 1 | - | 223 | - | - | 133 | 15 | - | 33 | , | 7 | 3 | . | - | 1 |
| S. ATLANTIC | 147 | 4 | 828 | - | 208 | 521 | 300 | 26 | 1,548 | 7 | 176 | 162 | 1 | 16 | 9 |
| Del. | 2 | - | 8 | - | 3 | 39 | 2 | - | 4 |  | 5 | 1 | 1 | 16 | - |
| Md. | 42 | 3 | 193 | - | 18 | 61 | 34 | 19 | 896 | 5 | 47 | 16 | - | 2 | 2 |
| D.C. | 10 | - | 15 | - | 7 | 34 | 11 | 1 | 32 |  | 14 | 16 | - | 1 | 2 |
| Va. | 36 | - | 70 | - | 2 | 21 | 38 | 3 | 90 | 1 | 15 | 9 | - | 1 | . |
| W. Va. | 2 | - | 6 | - | - | 51 | 12 | . | 40 | , | 14 | 20 | - | . | - |
| N.C. | 10 | - | 9 | - | 15 | 168 | 42 | - | 220 | - | 39 | 40 | - | - | 1 |
| S.C. | - | - | 4 | - | - | 2 | 21 | - | 33 | - | 5 | 40 | . | - | 1 |
| Ga . | 14 | - | 80 | - | 103 | 2 | 54 | 2 | 80 | 1 | 24 | 21 | - | - | - |
| Fla. | 31 | 1 | 443 | - | 60 | 143 | 86 | 1 | 153 | 1 | 13 | 55 | 1 | 12 | 6 |
| E.S. CENTRAL | 15 | 1 | 147 | - | 2 | 208 | 96 | 2 | 82 | 3 | 109 | 146 | 1 | 3 | 2 |
| Ky. | 2 | - | 31 | - | - | 31 | 31 | 2 | 82 | 3 | 10 | 1 | 1 | 3 | 2 |
| Tenn. | 8 | i | 70 | - | - | 132 | 35 | 2 | 46 | - | 45 | 89 | 1 | 3 | 2 |
| Ala. | 5 | 1 | 20 | - | 2 | 45 | 28 | 2 | 12 | 3 | 59 | 47 | 1 | 3 | 2 |
| Miss. | - | - | 26 | - | - | - | 2 | - | 24 | 3 | 5 | 9 | - | - | - |
| W.S. CENTRAL | 36 | 34 | 3,923 | - | 86 | 3,108 | 111 | 6 | 583 | 31 | 80 | 160 | 62 | 66 | 36 |
| Ark. | 2 | - | 12 10 | - | 28 | 5 | 16 | 1 | 131 | 1 | 3 | 17 | 62 | 3 |  |
| La. | 2 | 1 | 10 175 | $\cdot$ | - | 9 105 | 26 | 1 | 98 | 2 | 19 | 11 | . |  | 5 |
| Okla. | 8 24 | 1 33 | 175 3.726 | - | 58 | 105 | 15 | 1 | 105 | 2 | 30 | 25 | - | 1 | 1 |
| Tex. | 24 | 33 | 3,726 | - | 58 | 2,989 | 54 | 3 | 249 | 28 | 28 | 107 | 62 | 62 | 30 |
| MOUNTAIN | 17 | 12 | 747 | 2 | 91 | 363 | 52 | 3 | 294 | 3 | 186 | 480 | 2 | 105 | 35 |
| Mont. | 1 | 1 | - |  | 1 | 13 | 10 | 3 | 1 | 3 | 26 | 26 | 2 | 13 | $\begin{array}{r}1 \\ \\ \hline\end{array}$ |
| Idaho | 3 | 1 | 16 | - | 10 | 2 | 5 | - | 141 | 1 | 36 | 64 | . | 49 | 32 |
| Wyo. | 2 | - | 89 | - | 11 | , |  | - | 2 | 1 | 3 | 6 | - | - | 1 |
| Colo. | 2 | - | 89 | - | 42 | 72 | 16 | - | 21 | 2 | 62 | 43 | - | 4 | . |
| N. Mex. | 2 | - | 81 | $2 \S$ | 12 | 31 | 6 | N | N | 2 | 14 | 20 | - | - | - |
| Ariz. | 8 | 7 | 274 | - | 12 | 130 | 4 | 3 | 106 | - | 34 | 313 | - | 30 | - |
| Utah | 1 | 7 | 78 | - | , | 113 | 5 |  | 8 | - | 10 | 13 | - | 1 | , |
| Nev. | 1 | 4 | 209 | - | 3 | 2 | 6 | . | 15 | - | 4 | 1 | 2 | 8 | 1 |
| PACIFIC <br> Wash | $236$ | 3 | 6,038 | - | 152 | 1,481 | 453 | 4 | 453 | 6 | 372 | 281 | 7 | 518 | 140 |
| Wash. | $\begin{aligned} & 17 \\ & 12 \end{aligned}$ | 3 | 202 | - | 69 | - 51 | 57 | 1 | 41 | 1 | 88 | 111 | 7 | 518 | , |
| Oreg. | $12$ | 3 | 168 5 | - | 44 | 28 | 52 | N | N | 3 | 41 | 7 | - | 10 | 2 |
| Calif. <br> Alaska | $202$ | - | 5,582 | - | 33 | 1,375 | 332 | 3 | 397 | 2 | 209 | 158 | 7 | 498 | 117 |
| Alaska | $2$ | - | 78 | - | 2 | 1 | 8 |  | 3 | 2 | 4 | 158 | 7 | 498 | . |
| Hawaii | 3 | - | 8 | - | 4 | 29 | 4 | - | 12 | - | 30 | 5 | - | 10 | 21 |
| Guam | 3 | U |  | U | 1 | 2 | - | U | 3 | U | - | 1 | U | - | - |
| P.R. | 2 | - | 808 | - | , | 459 | 9 | U | 7 | 1 | 6 | 4 | U | - | 7 |
| V.I. | 5 | U | 21 | U | 3 | 4 | $\bigcirc$ | U | 7 | U | 6 | 4 | U | - | - |
| Amer. Samoa | 35 | U | 180 | U | , | 4 | - | U | 17 | U | - | - | U | - | - |
| C.N.M.I. | - | U |  | U | - | - | - | U | 7 | U | 4 | - | U | - | - |

[^4]N : Not notifiable U: Unavailable ${ }^{\dagger}$ International ${ }^{5}$ Out-of-state

TABLE II. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending August 18, 1990, and August 19, 1989 (33rd Week)

| Reporting Area | Syphilis (Civilian) (Primary \& Secondary) |  | Toxicshock Syndrome | Tuberculosis |  | Tularemia <br> Cum. <br> 1990 | Typhoid <br> Fever <br> Cum. <br> 1990 | Typhus Fever <br> (Tick-borne) <br> (RMSF) <br> Cum. <br> 1990 | Rabies, Animal <br> Cum. <br> 1990 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1989 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1989 \end{aligned}$ |  |  |  |  |
| UNITED STATES | 30,186 | 27,116 | 207 | 13,604 | 13,185 | 70 | 256 | 354 | 2,652 |
| NEW ENGLAND | 1,142 | 1,068 | 16 | 397 | 345 | 2 | 20 | 16 | 4 |
| Maine | 5 | 8 | 5 | - | 12 | - | - | . | - |
| N.H. | 40 | 10 | 1 | 3 | 16 | - | - | - | 2 |
| Vt. | 1 | - | - | 7 | 5 | - | - | - | . |
| Mass. | 446 | 327 | 8 | 172 | 179 | 2 | 19 | 15 | - |
| R.I. | 11 | 20 | 1 | 119 | 37 | - | - | - | - |
| Conn. | 639 | 703 | 1 | 96 | 96 | - | 1 | 1 | 2 |
| MID. ATLANTIC | 6,227 | 5,567 | 21 | 3,461 | 2,497 | 1 | 64 | 16 | 597 |
| Upstate N.Y. | 550 | 582 | 7 | 276 | 209 | - | 13 | 8 | 70 |
| N.Y. City | 2,872 | 2,450 | 5 | 2,161 | 1,391 | - | 36 | - | - |
| N.J. | 1,013 | 864 | - | 575 | 448 | 1 | 13 | 5 | 183 |
| Pa . | 1,792 | 1,671 | 9 | 449 | 449 | - | 2 | 3 | 344 |
| E.N. CENTRAL | 2,111 | 1,110 | 48 | 1,377 | 1,399 | 1 | 22 | 33 | 102 |
| Ohio | 345 | 85 | 17 | 236 | 251 | 1 | 5 | 27 | 5 |
| Ind. | 51 | 43 | 1 | 105 | 131 | - | 1 | - | 4 |
| III. | 865 | 507 | 7 | 701 | 628 | - | 11 | - | 21 |
| Mich. | 642 | 380 | 23 | 276 | 305 | - | 4 | 6 | 28 |
| Wis. | 208 | 95 | - | 59 | 84 | - | 1 | - | 44 |
| W.N. CENTRAL | 287 | 209 | 21 | 361 | 334 | 24 | 3 | 38 | 432 |
| Minn. | 54 | 31 | 1 | 65 | 68 | - | . | . | 159 |
| lowa | 39 | 22 | 5 | 38 | 28 | - | - | - | 17 |
| Mo. | 159 | 108 | 8 | 175 | 152 | 18 | 3 | 27 | 18 |
| N. Dak. | 1 | 3 | - | 14 | 11 | - | . | - | 60 |
| S. Dak. | 1 | - | - | 9 | 18 | 3 | - | 2 | 139 |
| Nebr. | 8 | 17 | 3 | 14 | 14 | 1 | - | - | 4 |
| Kans. | 25 | 28 | 4 | 46 | 43 | 2 | - | 9 | 35 |
| S. ATLANTIC | 9,867 | 9,945 | 20 | 2,698 | 2,803 | 3 | 28 | 141 | 751 |
| Del. | 109 | 108 | 1 | 24 | 27 | - | - | 1 | 14 |
| Md. | 730 | 494 | 1 | 214 | 233 | - | 7 | 13 | 277 |
| D.C. | 649 | 588 | 1 | 96 | 131 | - | - | - | - |
| Va. | 563 | 341 | 2 | 234 | 223 | 1 | 2 | 14 | 128 |
| W. Va. | 34 | 11 | - | 48 | 51 | - | - | - | 27 |
| N.C. | 1,125 | 635 | 10 | 353 | 336 | 1 | 2 | 73 | 4 |
| S.C. | 640 | 537 | 2 | 301 | 321 | 1 | 1 | 33 | 91 |
| Ga. | 2,523 | 2,541 | 1 | 439 | 427 | - | 1 | 7 | 147 |
| Fla. | 3,494 | 4,690 | 2 | 989 | 1,054 | - | 15 | 7 | 63 |
| E.S. CENTRAL | 2,705 | 1,710 | 11 | 1,041 | 1,079 | 6 | 2 | 46 | 119 |
| Ky. | 54 | 36 | 2 | 259 | 254 | 1 | 1 | 5 | 32 |
| Tenn. | 1,104 | 724 | 7 | 277 | 315 | 5 | . | 34 | 27 |
| Ala. | 818 | 540 | 2 | 322 | 306 | - | 1 | 7 | 60 |
| Miss. | 729 | 410 | - | 183 | 204 | - | - | - |  |
| W.S. CENTRAL | 4,627 | 3,661 | 11 | 1,740 | 1,574 | 21 | 8 | 52 | 320 |
| Ark. | 329 | 233 | - | 223 | 161 | 14 | - | 10 | 36 |
| La. | 1,150 | 861 | 1 | 150 | 212 |  | - | 1 | 16 |
| Okla. | 144 | 60 | 7 | 124 | 137 | 7 | 2 | 38 | 93 |
| Tex. | 3,004 | 2,507 | 3 | 1,243 | 1,064 | - | 6 | 3 | 175 |
| MOUNTAIN | 548 | 467 | 24 | 329 | 296 | 10 | 18 | 9 | 133 |
| Mont. | 6 | 1 | - | 22 | 11 |  | . | 4 | 34 |
| Idaho | 6 | 1 | 2 | 9 | 19 | - | . |  | 1 |
| Wyo. | 25 | 3 | 2 | 3 | - | 3 | - | - | 43 |
| Colo. | 25 | 53 | 7 | 14 | 20 | 2 | - | 1 | 8 |
| N. Mex. | 29 | 20 | 3 | 78 | 54 | 3 | . | 1 | 6 |
| Ariz. | 398 | 145 | 7 | 146 | 138 | - | 16 | 1 | 25 |
| Utah | 6 | 12 | 3 | 18 | 26 | 2 | , | 2 | 6 |
| Nev. | 84 | 232 | - | 39 | 28 | - | 2 | - | 10 |
| PACIFIC | 2,672 | 3,379 | 35 | 2,200 | 2,858 | 2 | 91 | 3 | 194 |
| Wash. | 229 | 282 | 4 | 173 | 152 | 1 | 2 |  |  |
| Oreg. | 94 | 160 | 3 | 81 | 95 | - | 4 | 1 | 1 |
| Calif. | 2,331 | 2,925 | 30 | 1,794 | 2,459 | - | 81 | 2 | 171 |
| Alaska | 10 | 3 | - | 28 | 43 | 1 | 8 | 2 | 22 |
| Hawaii | 8 | 9 | 1 | 124 | 109 | 1 | 4 | . | 22 |
| Guam | 2 | 4 | - | 29 | 54 | - | - | - | - |
| P.R. | 204 | 360 | - | 66 | 200 | . | . | - | 30 |
| V.I. | 3 | 8 | - | 4 | 4 | - | - | . | . |
| Amer. Samoa | - | - | - | 8 | 2 | - | 1 | . | . |
| C.N.M.I. | 1 | 7 | - | 31 | 15 | - | 4 | - | - |

TABLE III. Deaths in 121 U.S. cities,* week ending August 18, 1990 (33rd Week)

| Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | $\left\|\begin{array}{l} P \& I^{* *} \\ \text { Total } \end{array}\right\|$ | Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | $\begin{aligned} & \text { P\&l** } \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \hline \text { All } \\ \text { Ages } \end{gathered}$ | $\geqslant 65$ | 45-64 | 25-44 | 1-24 | <1 |  |  | $\begin{array}{\|c\|} \hline \text { All } \\ \text { Ages } \end{array}$ | $\geqslant 65$ | 45-64 | 25-44 | 1-24 | <1 |  |
| NEW ENGLAND | 565 | 371 | 117 | 44 | 13 | 20 | 45 | S. ATLANTIC | 1,177 | 693 | 250 | 124 | 35 | 59 | 54 |
| Boston, Mass. | 168 | 98 | 45 | 12 | 3 | 10 | 12 | Atlanta, Ga. | 148 | 77 | 37 | 19 | 4 | 11 | 3 |
| Bridgeport, Conn. | 44 | 31 | 7 | 5 | 1 | . | 3 | Baltimore, Md. | 235 | 140 | 59 | 21 | 7 | 8 | 9 |
| Cambridge, Mass. | 18 | 18 | - | - |  |  |  | Charlotte, N.C. | 72 | 43 | 19 | 6 | 2 | 2 | 5 |
| Fall River, Mass. | 17 | 13 | 4 |  |  |  |  | Jacksonville, Fla. | 98 | 58 | 24 | 11 | 2 | 3 | 9 |
| Hartford, Conn. | 46 | 20 | 13 | 8 | 5 |  | 6 | Miami, Fla. | 121 | 72 | 18 | 21 | 5 | 5 | 2 |
| Lowell, Mass. | 23 | 15 | 6 | 1 | - | 1 |  | Norfolk, Va. | 66 | 33 | 9 | 2 | 7 | 15 | 2 |
| Lynn, Mass. | 9 | 6 | ; | 2 | 1 | - |  | Richmond, Va. | 79 | 45 | 27 | 7 |  |  | 3 |
| New Bedford, Mass. | 16 | 12 | 3 | 1 |  |  | 1 | Savannah, Ga. | 45 | 29 | 9 | 3 | 1 | 3 | 2 |
| New Haven, Conn. | 37 | 30 | 5 |  | 1 | 1 | 5 | St. Petersburg, Fla. $\mathrm{\xi}^{\text {d }}$ | 65 | 53 | 7 | 2 | 1 | 2 | 6 |
| Providence, R.I. | 54 | 44 | 6 | 3 |  | 1 | 5 | Tampa, Fla. | 72 | 51 | 7 | 9 | 2 | 3 | 1 |
| Somerville, Mass. | 6 | 3 | 1 |  | $\bar{i}$ | 1 |  | Washington, D.C. | 154 | 72 | 33 | 22 | 4 | 7 | 2 |
| Springfield, Mass. | 44 | 27 | 11 | 2 | 2 | 2 | 1 | Wilmington, Del. | 22 | 20 | 1 | 1 |  | . |  |
| Waterbury, Conn. | 32 | 22 | 8 | 2 |  |  | 9 |  |  |  |  |  | 31 | 22 | 41 |
| Worcester, Mass. | 51 | 32 | 8 | 7 |  | 4 | 9 | E.S. CENTRAL | 790 99 | 71 | 17 | 4 | 2 | 5 | 2 |
| MID. ATLANTIC | 2,818 | 1,799 | 556 | 320 | 69 | 71 | 142 | Chattanooga, Tenn. | 59 | 39 | 5 | 13 | 2 |  | 3 |
| Albany, N.Y. | 35 | 21 | 7 | 3 | 1 | 3 | 1 | Knoxville, Tenn. | 82 | 51 | 17 | 7 | 3 | 4 | 3 |
| Allentown, Pa. | 22 | 17 | 4 | 1 | - | - |  | Louisville, Ky. | 105 | 70 | 20 | 6 | 6 | 3 | 3 |
| Buffalo, N.Y. | 100 | 70 | 20 | 6 | 1 | 3 | 2 | Memphis, Tenn. | 181 | 123 | 32 | 17 | 7 | 2 | 13 |
| Camden, N.J. | 36 | 24 | 6 | 4 |  | 2 |  | Mobile, Ala. | 85 | 63 | 9 | 7 | 5 | 1 | 5 |
| Elizabeth, N.J. | 21 | 14 | 6 |  | 1 |  | 2 | Montgomery, Ala. | 47 | 30 | 11 | 3 |  | 3 | 5 |
| Erie, Pa.t | 43 | 31 | 10 | 1 | 1 | $\overline{7}$ | 3 | Nashville, Tenn. | 132 | 83 | 26 | 13 | 6 | 4 | 7 |
| Jersey City, N.J. N.Y. City, N.Y. | 56 1,384 | 35 852 | 15 259 | $\begin{array}{r}5 \\ 210\end{array}$ | 34 | 1 29 | 65 | W.S. CENTRAL | 1,668 | 982 | 377 | 188 | 73 | 48 | 63 |
| Newark, N.J. | 72 | 24 | 21 | 16 | 1 | 8 | 7 | Austin, Tex. | 72 | 47 | 11 | 9 | 3 | 2 |  |
| Paterson, N.J. | 27 | 23 | 4 |  |  |  | 3 | Baton Rouge, La. | 47 | 29 | 11 | 3 | 1 | 3 | 3 |
| Philadelphia, Pa. | 603 | 391 | 143 | 44 | 11 | 13 | 36 | Corpus Christi, Tex. | 57 | 39 | 12 | 5 |  | 1 | 6 |
| Pittsburgh, Pa. $\dagger$ | 91 | 62 | 17 | 6 | 1 | 5 | 6 | Dallas, Tex. | 191 | 86 | 54 | 30 | 14 | 7 | 3 |
| Reading, Pa. | 31 | 23 | 4 | 2 | - | 2 | 8 | El Paso, Tex. | 49 | 34 | 9 | 1 | 3 | 2 | 5 |
| Rochester, N.Y. | 80 | 60 | 11 | 5 | 1 | 3 | 4 | Fort Worth, Tex | 76 | 48 | 18 | 6 | 2 | 2 |  |
| Schenectady, N.Y. | 24 | 17 | 5 | 1 | 1 |  |  | Houston, Tex. ${ }^{\text {s }}$ | 734 | 436 | 169 | 89 | 24 | 16 | 18 |
| Scranton, Pa. $\dagger$ | 23 | 19 | 3 | 1 |  |  |  | Little Rock, Ark. | 58 | 41 | 8 | 2 | 1 | 6 | 6 |
| Syracuse, N.Y. | 85 | 57 | 7 | 5 | 15 | 1 | 1 | New Orleans, La. | 124 | 68 | 25 | 14 | 13 | 4 |  |
| Trenton, N.J. | 42 | 30 | 5 | 6 | . | 1 | 2 | San Antonio, Tex. | 152 | 85 | 36 | 21 | 9 | 1 | 11 |
| Utica, N.Y. | 17 | 8 | 7 | 1 | 1 | - |  | Shreveport, La. | 20 | 9 | 5 | 2 | 2 | 2 |  |
| Yonkers, N.Y. | 26 | 21 | 2 | 3 |  |  | - | Tulsa, Okla. | 88 | 60 | 19 | 6 | 1 | 2 | 2 |
| E.N. CENTRAL | 2,178 | 1,435 | 445 | 165 | 58 | 75 | 80 | MOUNTAIN | 698 | 433 | 146 | 68 | 31 | 20 | 3 |
| Akron, Ohio | 69 | 48 | 16 | 4 |  | 1 | 4 | Albuquerque, N. Mex | x. 82 | 46 | 16 | 14 | 5 | 1 | 9 |
| Canton, Ohio | 33 | 24 | 8 | 1 |  |  | 6 | Colo. Springs, Colo. | 48 | 33 | 9 | 3 | 2 | 1 | 9 |
| Chicago, III.§ | 564 | 362 | 125 | 45 | 10 | 22 | 16 | Denver, Colo. | 127 | 89 | 19 | 9 | 2 |  | 6 |
| Cincinnati, Ohio | 93 | 67 | 19 | 3 | 1 | 3 | 8 | Las Vegas, Nev. | 119 | 63 | 31 | 15 | 6 | 4 | 5 |
| Cleveland, Ohio | 135 | 77 | 33 | 10 | 7 | 8 | 2 | Ogden, Utah | 19 | 14 |  | 2 |  |  | 5 |
| Columbus, Ohio | 153 | 97 | 29 | 14 | 5 | 8 | 5 | Phoenix, Ariz. | 136 | 83 | 33 | 10 | 5 | 5 | 2 |
| Dayton, Ohio | 104 | 66 | 28 | 8 | 2 |  |  | Pueblo, Colo. | 11 | 9 | 1 | 1 | 7 | - | 1 |
| Detroit, Mich. | 208 | 118 | 40 | 32 | 9 | 9 | 6 | Salt Lake City, Utah | 41 | 24 | 7 | 2 | 7 | 1 |  |
| Evansville, Ind. | 54 | 44 | 3 | 2 | 2 | 3 | 2 | Tucson, Ariz. | 115 | 72 | 27 | 12 | 4 | - | 6 |
| Fort Wayne, Ind. | 61 | 40 | 11 | 6 | 4 | . | 8 | PACIFIC |  | 1,268 | 350 | 203 | 63 | 45 | 111 |
| Gary, Ind. | 15 | 9 | 4 | 1 | 1 |  |  | Berkeley, Calif. | 18 | 15 | 2 | 1 |  |  | 1 |
| Grand Rapids, Mich. | 65 | 44 | 14 | 2 | 1 | 4 | 4 | Fresno, Calif.§ | 71 | 49 | 10 | 6 | 3 | 3 | 7 |
| Indianapolis, Ind. | 162 | 113 | 30 | 9 | 6 | 4 | , | Glendale, Calif. | 23 | 19 | 2 | 1 |  | - | 4 |
| Madison, Wis. | 39 | 26 | 7 | 5 |  | 1 |  | Honolulu, Hawaii | 76 | 50 | 13 | 8 |  | 4 | 11 |
| Milwaukee, Wis. | 122 | 92 | 18 | 8 | 2 | 2 | 4 | Long Beach, Calif. | 75 | 38 | 19 | 9 | 4 | 5 | 7 |
| Peoria, III. Rockford, III. | 42 | 30 32 | 9 | 1 | 3 | 2 | 3 | Los Angeles Calif. | 399 | 239 | 76 | 54 | 22 | 5 | 17 |
| South Bend, Ind. | 62 | 42 | 8 | 2 | 3 4 | 4 3 |  | Oakland, Calif. | 85 | 55 | 16 | 8 | 5 | 1 | 4 |
| Toledo, Ohio | 92 | 65 | 22 | 4 | 4 | 1 | 3 | Pasadena, Calif. | $\begin{array}{r}24 \\ 147 \\ \hline\end{array}$ | 9 | 27 | 17 | 5 | 2 | 4 |
| Youngstown, Ohio | 56 | 38 | 14 | 3 | 1 | . |  | Sacramento, Calif. | 139 | 100 | 21 | 11 | 4 | . | 10 |
| W.N. CENTRAL | 726 | 520 | 125 | 44 | 19 | 17 | 32 | San Diego, Calif. | 315 | 218 | 53 | 24 | 7 | 12 | 21 |
| Des Moines, lowa | 52 | 42 | 7 | 1 | 1 | 1 | 5 | San Francisco, Calif. | 145 | 85 | 29 | 23 | 4 | 2 | 4 |
| Duluth, Minn. | 30 | 20 | 8 | 1 | 1 |  |  | San Jose, Calif. | 172 | 112 | 31 | 18 | 3 | 7 | 10 |
| Kansas City, Kans. | 20 | 12 | 6 | 1 | 1 |  | 1 | Seattle, Wash. | 153 | 101 | 32 | 15 | 3 | 2 | 2 |
| Kansas City, Mo. | 99 | 63 | 18 | 10 | 4 | 4 | 5 | Spokane, Wash. | 55 | 41 | 8 | 3 | 2 | 1 | 5 |
| Lincoln, Nebr. | 33 | 21 | 7 | 3 | - | 1 | 3 | Tacoma, Wash. | 44 | 30 | 8 | 4 | 1 | 1 |  |
| Minneapolis, Minn. | 195 | 138 | 37 | 11 | 4 | 5 | 7 | total | 12,561 ${ }^{\text {t† }}$ | 8,031 | 2,503 | 1,226 | 392 | 377 | 611 |
| Omaha, Nebr. | 70 | 52 | 10 | 4 | 4 |  | 3 |  |  |  |  |  |  |  |  |
| St. Louis, Mo. | 130 | 97 | 17 | 7 | 3 | 6 |  |  |  |  |  |  |  |  |  |
| St. Paul, Minn. | 60 | 48 | 9 | 3 | - |  |  |  |  |  |  |  |  |  |  |
| Wichita, Kans. | 37 | 27 | 6 | 3 | 1 |  |  |  |  |  |  |  |  |  |  |

[^5]§Data not available. Figures are estimates based on average of past available 4 weeks.

Tuberculosis - Continued
Based on these rates and estimates of the number of cases that remain undetected and untreated and the number that are detected and treated with standard chemotherapy regimens (World Health Organization [WHO], unpublished data), the estimated annual number of deaths from TB in the developing world is $>2,500,000$ (Table 3), or approximately $6.7 \%$ of all deaths ( 5 ) and, among persons 15-59 years of age, $18.5 \%$ of deaths and $26 \%$ of preventable deaths (6).

## Prevention and Control

Three major strategies for controlling TB are BCG vaccination of children, chemoprophylaxis, and case-finding/treatment.

Total coverage with BCG can prevent $40 \%-70 \%$ of deaths from TB among children and reduce total TB mortality by approximately $6 \%$ (1). However, because the effect of BCG on TB mortality is limited in older age groups, expanded BCG coverage cannot be the sole means employed to control TB.

Although clinical TB can be secondarily prevented by treating persons with latent tuberculous infection, mass chemoprophylaxis of all such persons cannot be efficiently or economically accomplished. However, selective treatment of high-risk groups (e.g., close family contacts of smear-positive sources) may be feasible. If

TABLE 1. Estimated incidence* of smear-positive pulmonary tuberculosis (TB) developing countries, 1990

|  | Estimated no. cases |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Area | Low |  |  |  |
| Midpoint | High | Rate $^{\dagger}$ |  |  |
| Sub-Saharan Africa | 296,000 | 521,000 | 745,000 | 103 |
| East and South Asia | $1,142,000$ | $2,298,000$ | $3,455,000$ | 79 |
| North Africa and West Asia | 53,000 | 146,000 | 239,000 | 54 |
| South America | 57,000 | 160,000 | 263,000 | 54 |
| Central America and Caribbean | 30,000 | 83,000 | 136,000 | 54 |
| Total | $\mathbf{1 , 5 7 8 , 0 0 0}$ | $\mathbf{3 , 2 0 8 , 0 0 0}$ | $\mathbf{4 , 8 3 8 , 0 0 0}$ | $\mathbf{7 7}$ |

*Low, midpoint, and high estimates were derived by assuming there are 39, 49, and 59 cases of smear-positive TB per 100,000 population for every $1 \%$ average annual risk of tuberculous infection.
${ }^{\dagger}$ Per 100,000 population.

TABLE 2. Estimated incidence* of all forms of tuberculosis (TB) - developing countries, 1990

|  | Estimated no. cases |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Area | Low |  |  |  |
| Midpoint | High | Rate $^{\dagger}$ |  |  |
| Sub-Saharan Africa | 656,000 | $1,156,000$ | $1,655,000$ | 229 |
| East and South Asia | $2,535,000$ | $5,102,000$ | $7,670,000$ | 174 |
| North Africa and West Asia | 117,000 | 323,000 | 530,000 | 120 |
| South America | 129,000 | 356,000 | 584,000 | 120 |
| Central America and Caribbean | 66,000 | 185,000 | 302,000 | 120 |
| Total | $\mathbf{3 , 5 0 3 , 0 0 0}$ | $\mathbf{7 , 1 2 2 , 0 0 0}$ | $\mathbf{1 0 , 7 4 1 , 0 0 0}$ | $\mathbf{1 7 1}$ |

*Assumes 1.2 cases of smear-negative pulmonary TB and extrapulmonary TB for each case of smear-positive pulmonary TB.
${ }^{\dagger}$ Per 100,000 population.

## Tuberculosis - Continued

proven effective in clinical trials, chemoprophylaxis might also play an important role in preventing clinical TB in persons with dual human immunodeficiency virus (HIV) and tuberculous infections.

## Treatment

The most effective means of reducing transmission of tuberculous infection, and thus the number of TB cases, is to treat and cure patients with smear-positive TB. Each person with undiagnosed and untreated smear-positive TB will cause 10-14 infections per year. Of these, 0.6-1.2 eventually will become new cases of TB (1).

Despite the availability of anti-TB drugs, TB treatment programs in most developing countries have not succeeded because of poor patient compliance with therapy, emergence of drug-resistant organisms, and failure to carefully control drug supplies and therapy. Cure rates in developing countries are frequently $<50 \%$; however, cure rates of $>90 \%$ can be achieved when short-course chemotherapy regimens are given under supervision (7). A major obstacle to the more widespread use of these short-course treatment regimens is the higher cost of the drugs, especially rifampin and pyrazinamids.

## Cost-Effectiveness

The estimated cost of treatment per patient in developing countries, in 1986 U.S. dollars, is $\$ 123$ for standard 12-month chemotherapy and $\$ 168$ for short-course chemotherapy. However, the cost per patient cured is $\$ 368$ for standard 12-month chemotherapy and $\$ 314$ for short-course. For standard 12-month chemotherapy, the estimated cost per death averted is $\$ 569$ for standard therapy and $\$ 514$ for shortcourse therapy. The estimated cost per death averted, including the effect of reducing one round of transmission by sputum smear-positive cases, is $\$ 275$ for standard chemotherapy and $\$ 243$ for short-course chemotherapy (1).
Reported by: CJL Murray, Harvard School of Public Health, Boston, Massachusetts. K Styblo, A Rouillon, International Union Against Tuberculosis and Lung Disease, Paris, France. Div of Tuberculosis Control, Center for Prevention Svcs, CDC.
Editorial Note: With the possible exception of measles (8), more persons in developing countries die from TB each year than from any other pathogen. Existing diagnostic technology and chemotherapeutic agents can prevent morbidity and mortality from TB in these countries. The National Tuberculosis Programs, assisted by the International Union Against Tuberculosis and Lung Disease (!UATLD), have shown that short-course chemotherapy can be applied on a national scale with excellent results (1). The analysis of the cost-effectiveness of both standard 12-month
TABLE 3. Estimated number of deaths and death rate* from all forms of tuberculosis - developing countries, 1990

|  | Estimated no. deaths |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Area | Low | Midpoint | High | Death rate |
| Sub-Saharan Africa | 266,000 | 528,000 | 790,000 | 104 |
| East and South Asia | 771,000 | $1,709,000$ | $2,646,000$ | 58 |
| Central America and Caribbean | 28,000 | 88,000 | 148,000 | 57 |
| South America | 41,000 | 125,000 | 211,000 | 42 |
| North Africa and West Asia | 33,000 | 99,000 | 166,000 | 37 |
| Total | $\mathbf{1 , 1 3 9 , 0 0 0}$ | $\mathbf{2 , 5 4 9 , 0 0 0}$ | $\mathbf{3 , 9 6 1 , 0 0 0}$ | $\mathbf{6 1}$ |

*Per 100,000 population.

Tuberculosis - Continued
and short-course chemotherapy indicates that TB chemotherapy is as cost effective as other health interventions routinely applied in developing countries (e.g., immunizations and oral rehydration therapy) (9).

Recent findings indicate a marked increase in TB cases caused by an interaction of TB with HIV (10). The combination of the enormous public health burden, the existence of cost-effective interventions, and the demonstrated interaction between tuberculous and HIV infections make TB a high priority for action and research in international health. WHO and The World Bank, with assistance from IUATLD, CDC, and other organizations, are reassessing their approaches to the prevention and control of TB. Additionally, the International Task Force for Disease Eradication has recognized the public health burden of TB and has identified two requirements for reducing this burden: 1) improved diagnostic tests, chemotherapy, and vaccine; and 2) wider application of current therapy (11).

## References

1. Murray CJL, Styblo K, Rouillon A. Tuberculosis in developing countries: burden, intervention, and cost. Bull Int Union Tuberc Lung Dis 1990;65:6-24.
2. Cauthen GM, Pio A, ten Dam HG. Annual risk of tuberculous infection. Geneva: World Health Organization, 1988; document no. WHO/TB/88.154.
3. Styblo K. Overview and epidemiologic assessment of the current global tuberculosis situation with an emphasis on control in developing countries. Rev Infect Dis 1989; Il(2): S339-S346.
4. Rutledge JA, Crouch JB. The ultimate results in 1654 cases of tuberculosis treated at the Modern Woodmen of America Sanitorium. Am Rev Tuberc 1919;2:755-63.
5. United Nations. World population prospects: estimates and projections as assessed in 1988. New York: United Nations, 1989.
6. Murray CJL, Feachem RG. Adult mortality in the developing world. Trans R Soc Trop Med 1990;84:21-2.
7. Styblo K, Chum HJ. Treatment results of smear-positive tuberculosis in the Tanzania National Tuberculosis and Leprosy Programme: standard and short-course chemotherapy. In: Proceedings of the XXVI IUAT World Conference on Tuberculosis and Respiratory Diseases. Tokyo: Professional Postgraduate Services, 1987:122-6.
8. Walsh J. Establishing health priorities in the developing world. New York: United Nations Development Programme, 1988.
9. Haag JG. Cost effectiveness and cost benefits analysis of immunization programs in developing countries: a review of the literature. Washington, DC: Pharmaceutical Manufacturers Association, 1982.
10. Styblo K. The global aspects of tuberculosis and HIV infection. Bull Int Union Tuberc Lung Dis 1990;65:28-32.
11. CDC. International Task Force for Disease Eradication. MMWR 1990;39:209-12,217.

The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control, Atlanta, Georgia, and is available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials, as well as matters pertaining to editorial or other textual considerations should be addressed to: Editor, Morbidity and Mortality Weekly Report, Mailstop C-08, Centers for Disease Control, Atlanta, Georgia 30333; telephone (404) 332-4555.

Director, Centers for Disease Control William L. Roper, M.D., M.P.H.
Director, Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc.

Editor, MMWR Series
Richard A. Goodman, M.D., M.P.H.
Managing Editor
Karen L. Foster, M.A.

ZU.S. Government Printing Office: 1990-731-103/22017 Region IV
LL08-06 (JOJ) 'on uolleo!!qnd SHH
ןe6əן!! s! łu!ıdu! ł!uıəd 6u!sn uo!̣nq!ı!s!pəy



[^0]:    *Before 1990, a case of AFP was "confirmed" as poliomyelitis if there was: 1) laboratory confirmation (wild-type poliovirus isolated from the stool), 2) epidemiologic linkage to another case of AFP or confirmed case, 3) residual paralysis 60 days after onset, 4) death, or 5) lack of follow-up of a case. Cases of AFP were "discarded" if they did not meet these criteria. In July 1989, routine serologic testing was discontinued in favor of efforts to obtain laboratory confirmation by isolating wild poliovirus from stool.

[^1]:    ${ }^{5}$ The Commission members are: Waldyr Arcoverde, M.D., National Health Foundation, Ministry of Health, Brazil; Isao Arita, M.D., Kumamoto National Hospital, Japan; Rodrigo Guerrero, M.D., Carbajal Foundation, Colombia; Dorothy Horstmann, M.D., Yale University School of Medicine, United States; Jan Kostrzewski, M.D., Polish Academy of Science, Poland; Maureen Law, M.D., International Development Research Center, Canada; Elsa Moreno, M.D., University of Tucumän, Argentina; V. Ramalangaswami, M.D., Nehru University, India; Olikoye Ransome-Kuti, M.D., Ministry of Health, Nigeria; Frederick Robbins, M.D., Case Western Reserve University School of Medicine, United States; Guillermo Soberón, Mexican Foundation for Health, Mexico; and Kenneth Standard, M.D., Caribbean Public Health Association, West Indies.

[^2]:    *ARIs are calculated from tuberculin skin test surveys of representative samples of non-BCG-vaccinated persons (e.g., if a sample of nonvaccinated 6 -year-olds had a prevalence of TB infection of $6 \%$, the annual risk of infection would be $1 \%$ ).

[^3]:    *Three cases of suspected poliomyelitis have been reported in 1990; five of 13 suspected cases in 1989 were confirmed and all were vaccine-associated.

[^4]:    *For measles only, imported cases includes both out-of-state and international importations.

[^5]:    *Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
    **Pneumonia and influenza.
    †Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
    $\dagger \dagger$ Total includes unknown ages.

